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Abstract
Entropy estimation of information sources is highly non-trivial for symbol
sequences with strong long-range correlations. The rabbit sequence, related
to the symbolic dynamics of the nonlinear circle map at the critical point as
well as the logistic map at the Feigenbaum point, is known to produce long
memory tails. For both dynamical systems the scaling behaviour of the block
entropy of order n has been shown to increase ∝ log n. In contrast to such
probabilistic concepts, we investigate the scaling behaviour of certain non-
probabilistic entropy estimation schemes suggested by Lempel and Ziv (LZ) in
the context of algorithmic complexity and data compression. These are applied
in a sequential manner with the scaling variable being the length N of the
sequence. We determine the scaling law for the LZ entropy estimate applied to
the case of the critical circle map and the logistic map at the Feigenbaum point
in a binary partition.

PACS numbers: 75.40.Gb, 05.45.-a, 03.67.-a, 89.75.Da

1. Introduction

Partially random chains of symbols s1, s2, . . . , sn, drawn from some finite alphabet, appear
in practically all sciences, e.g. written texts by humans, DNA sequences, spins in one-
dimensional magnets, cellular automaton or bits in the storage and transmission of digital
data like music scores and pictures. In this context it would be interesting to know
to what degree these sequences can be ‘compressed’ without losing any information.
This question was first posed from a probabilistic point of view by Shannon [1], who
showed that in this context the relevant measure is the entropy (or average information
content) h. With respect to statistical physics, h is related to the thermodynamic
(Boltzmann) entropy of the underlying system. One reason for the significance of Shannon’s
framework is its association with the achievable compression ratio in the limit of very long
sequences.
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Formally, an information source is, by definition, a mechanism that produces messages
over a finite alphabet A = {0, 1, . . . , d − 1}, i.e. a set of symbols of size d. Let a message of
length n be denoted by sn1 = s1, s2, . . . , sn, with si ∈ A. Moreover, let a codeC be a translation
mechanism (or algorithm) which for each n takes a message from An as input and transforms
it into a binary sequence of variable length. Such a type of transformation is called a fixed- to
variable-length encoding. If the message is produced by a stationary and ergodic source, the
quantity of importance in determining the entropy rate h of the source is the block entropy

Hn = −
∑
s1,...,sn

p(sn1 ) logp(sn1 ) (1)

where p(sn1 ) are the probabilities of subsequences or ‘words’ of fixed length n while the
logarithm is, by definition, of base two. Then the Shannon entropy (or the entropy of the
source) is formally given by

h = lim
n→∞

Hn

n
. (2)

One of the most fundamental theorems of information theory, Shannon’s noiseless coding
theorem, states that any code has an expected length per symbol that is at least as large as the
entropy rate (2) of the source [1–3]. For the numerical determination of the entropy, simple
word counting is commonly used to estimate the relative frequencies of subsequences or words
of fixed length n. In the limit of large data sets, the relative frequency distribution becomes
the underlying probability distribution.

However, the estimation of entropy can be highly non-trivial depending on the complexity
of the source. This is especially true in the case of strong long-range correlations. In this
case such correlations may be used to achieve higher compression rates as they reduce the
uncertainty of yet unseen symbols. To detect them and take them into account may prove
extremely difficult due to the exponential increase of the number of different blocks or ‘words’
with the length n. Several studies exist on both the estimation of h and the finite sample
corrections for the block entropyHn [4–6]. Empirical investigations lead to power-law scaling,
Hn ≈ a nµ + b, µ ≈ 0.5, in the case of several samples of texts and µ ≈ 0.25 for classical
music [5,7]. For Markov processes of order m, one easily obtains the result that the entropy h
of the source is reached for blocks of length n = m. Spectral analytical studies of deterministic
sequences defined by a substitution process can be found in [8].

Furthermore, the border between periodicity and chaos is of special interest when the
dynamics of the logistic map take on chaotic characteristics by period doubling. At the
Feigenbaum point, Grassberger [9, 10] finds the explicit expression

Hn ∝ log(n) (3)

for blocks of length n = 2k i.e. the entropy per symbol approaches as ∝ log(n)/n goes to
zero. Another example of long-range order is associated with the sine circle map at the critical
point [11, 12]. As in the case of the logistic map the scaling behaviour of the block entropy is
∝ log(n) [13].

However, a second theorem of Shannon states that the lower bound (2) is asymptotically
achievable [1–3]. This leaves plenty of room for algorithmic design. As a matter of fact,
coding algorithms can be split into two groups: codes that are designed for a specific (known)
probability distribution over the input string, as well as universal codes that do not require any
probabilistic distribution to be known a priori. The latter approach is also the best at coming
close to the optimum over an entire class of sources. The first group includes Huffmann– and
Shannon–Fano codes while the most commonly known algorithms of the second group are
the ones by Lempel and Ziv (LZ) [14,15,19]. Originally constructed to provide a complexity
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measure for individual finite sequences, the LZ algorithm is similar in spirit to the algorithmic
complexity of Kolmogorov, Solomonoff and Chaitin [16–18]. Yet it has been shown that in
the case of statistically stationary strings, the LZ-algorithm converges to the Shannon entropy
if the length of the string tends to infinity [19].

2. Lempel–Ziv coding

The attempt to eliminate probabilistic ideas, i.e. the method with the best chances of taking
long-range correlations into account, has been the coding scheme of LZ [14,15]. In this scheme
the sequence of length N is parsed into words of variable length so that the next word is the
shortest word not seen in the past. The corresponding code consists of pairs of numbers: each
pair being a pointer to the previous occurrence of the prefix of the phrase and the last bit of the
phrase.

Formally, the sequence is split into wordsw1, w2, . . .withw1 = s1, andwk+1 is the shortest
new word immediately following wk . For instance, the sequence S = 1011010110110 . . . is
split into segments

(1)(0)(11)(01)(011)(0110)(. . . .

Thus each wordwk with k > 1 is an extension of somewj with j < k and a single symbol
s ′ ∈ A. Any element of such partition is then simply encoded by the pair (j, s ′). So far, we
have only considered a binary alphabet, however an extension to any finite alphabet is obvious.
It is evident that this is a good encoding in the sense that the string can be clearly decoded from
the encoded sequence. Both the encoder and the decoder built up the same dictionary of words,
and therefore the decoder can always find and add the new word. The encoding is efficient
because for sequences of low entropy there are frequent repetitions, so that the average length
of the words wk increase faster, and the number of needed pairs (j, s ′) increase slower than
for sources of higher entropy.

This Ziv–Lempel (ZL) coding is indeed a simplification of an earlier scheme by LZ [14],
called LZ coding. Here the string is also split into a chain of words w1, w2, . . . , however a
word wk is not necessarily an extension of a previous word wj . Instead, it can be an extension
of any substring of S which starts beforewk and might be overlapping. In the above-mentioned
example we obtain a different parsing

(1)(0)(11)(010)(11011)(0 . . . .

This seems more efficient than ZL-parsing in the sense that the average word length extends
faster and therefore can make better use of long-range correlation. Furthermore, the code length
per word is slightly larger, so that it is not clear whether its compression performance is indeed
better than ZL for small N . In any case the convergence of the compression rate with N is
theoretically not well understood in either scheme. More precisely, for both the LZ and the ZL
schemes, the entropy of stationary and ergodic sequences is related to the length lN as follows

h = lim
N→∞

lN

N
. (4)

Thus, both parsing schemes are universal in the sense that they reach asymptotically the
entropy of the source. As in case (2), the convergence of the code length (4) versus the lengthN
of the sequence is from above. In the case of block entropies, the larger the blocks the more
correlations are taken into account when the length of the blocks become large, so that the
information per symbol decreases with n. On the other hand, in the case of LZ, in addition to
the specific sequence, the information about the probability distribution also has to be encoded
implicitly. This mostly affects the beginning, when the information per symbol is the highest.
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In other words, the LZ encoding is self-learning, and its efficiency increases with the length
of the sequence.

Slight modifications of LZ’s coding (i.e. prefix trees, dictionary extension etc) have been
applied to entropy estimation of English texts by Grassberger [20] and others [21, 22]. To
obtain a deeper insight into the finite sample behaviour, we compute the rate of convergence
associated with the estimate as follows

hN = lN

N
. (5)

Let us consider the case of memoryless (Bernoulli) sources. Symbol ‘0’ appears with
the probability p > 0 and ‘1’ appears with the probability q = 1 − p. Then the average
excess of hN with respect to the entropy of the source associated with the ZL scheme is of
order ∝ 1/ logN [23]. On the other hand, the corresponding expression for the LZ coding is
known to be of order ∝ log logN/ logNand this is conjectured to be the right order. Assuming
that this conjecture is correct, the ZL algorithm, based on ‘shorter’ words in the parsing, is
more efficient in the case of Bernoulli sources. Nevertheless, Shields [24] proved that such
redundancy rates cannot be achieved for general stationary and ergodic sources. Furthermore,
one should keep in mind that in most practical cases the above redundancy rates are not
achievable.

3. Parsing the rabbit sequence

Let us take a look at the critical circle map which is represented by partitioning the time series
on a binary (generating) partition. Denoting the pieces of the partition by symbols ‘0’ and ‘1’,
the dynamical system is mapped clearly on an infinite binary string. This string, also called
rabbit sequence [12], is generated by the grammatical rule [13]

b0 = 0

b1 = 1

br+1 = brbr−1 for r � 1.

(6)

The right-hand side of the last equation formally represents the concatenation of the two
finite predecessors br−2 and br−1 of br+1, called Fibonacci words. Thus, the rabbit sequence
is equal to the infinite Fibonacci word. The first few Fibonacci words are

b1 = 1

b2 = 10

b3 = 101

b4 = 10110

b5 = 10110101

b6 = 1.0.11.010.11011.0

and the dots in the last word indicate the first words of the LZ incremental parsing scheme.
Many interesting characteristics of Fibonacci words concerning their symmetry, divisibility or
properties of self similarity can be found in [12, 25–27] and corresponding references. One
property is that the length (i.e. the number of bits) of the rth Fibonacci word, br , equals the
(r + 1)th Fibonacci number Fr+1. The Fibonacci numbers are defined by the recursive relation

F0 = 0 F1 = 1

Fr+1 = Fr + Fr−1
(7)

i.e. the first are 0, 1, 1, 2, 3, 5, 8, 13, . . . .
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To determine hN , we construct the incremental parsing associated with the LZ algorithm.
In the following let sji be the substring of S starting at position i and ending at j , sji =
si, si+1, . . . , sj . Then we formulate the following:

Theorem 1 (parsing). Let S be the rabbit sequence defined by (6). Then, for all k � 1, the
incremental parsing of S, associated with the LZ-coding scheme is given by the words

wk = S
Fk+2−1
Fk+1

. (8)

Proof. First note that for all k � 1, the length of the kth word wk is equal to Fk , and the length
of the concatenation of the first M words, w1, . . . , wM , is

∑M
k=1 Fk = FM+2 − 1. Hence, the

number of words in any Fibonacci word br is r − 1, and as a consequence, the length of the
concatenation w1, . . . , wr−1 is just one symbol shorter than br . Let ur be the last symbol (or
word of length 1) of br , then we receive the following expression for the rth Fibonacci word

br = w1w2 . . . wr−1ur. (9)

Lemma 1. For r � 2, the last symbol of br is

ur = 1 − (−1)r

2
. (10)

Proof (by induction).

(i) Let r = 2k be even, k � 1. For k = 1 it follows that b2 = b10. Step from k to
k + 1: by induction assumption the last symbol of b2k is ‘0’ and by definition (6) we have
b2(k+1) = b2k+1b2k . Therefore, the last symbol of b2(k+1) is ‘0’.

(ii) Let r = 2k + 1 be odd, k � 1. For k = 1 it follows, b3 = b21, by definition. Step
from k to k + 1: by assumption the last symbol of b2k+1 is ‘1’. By rule (6) we have
b2(k+1)+1 = b2k+2b2k+1. Therefore, the last symbol of b2(k+1)+1 is ‘1’. �

Lemma 2 (dynamical phrase generation). For k � 1, let w−
k be the kth word in (8), but with

an inverted last symbol. In this case the following rule of recursion is stated:

w1 = 1 w2 = 0

wk = wk−2w
−
k−1 for k � 3.

(11)

Proof. Inserting expression (9) into the recursion relation of the Fibonacci words (6) and using
the identity uk−1 = uk+1, it follows that

wk = ukw1w2 . . . wk−2 for k � 1. (12)

Then, (11) will be proven by induction:

(i) Let k = 3, then it follows w3 = 11 = w10−. Induction step: assume (11) is true for k
fixed. Multiplying (11) by wk−1 from the left and using (12) for k + 1, the result is
wk−1wk = w−

k+1. Multiplying the latter equation by ukw1w2 . . . wk−2 from the left and
using uk+2 = uk , the result is wk+2 = wkw

−
k+1, which is the first part of the proof.

(ii) Let k = 4, then w4 = 010 = w2w
−
3 . Induction step: with similar arguments as in (i),

from wk+1 = w(k+1)−2w
−
(k+1)−1, we receive the final expression wk+3 = wk+1w

−
k+2 which

leads to the desired result.
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Now, since the last symbol of successor w−
k−1 in (11) is ‘flipped’, one can be sure that

no extension to the right of any word wk can appear. To conclude the proof of theorem 1,
we finally have to check if no substring exists equal to wk before the word wk−2, i.e. before
position Fk−1 in the rabbit sequence. However this property is given by theorem (a) in [13]
by setting k = s + 2, i.e. all substrings of length Fk − 1, that start at position 1, . . . , Fk are
different. �

The compression ratio (5) can be determined by computing the number of bits lN needed
to encode the first N symbols of the rabbit sequence. We know from theorem 1 that the length
of the kth word in the LZ-parsing is equal to Fk . From lemma 2 it follows that the reference
word in the history of word wk is at the position equal to Fk−1. According to the analytical
expression of Fibonacci numbers we get the approximation

Fk ≈ φk√
5

φ = 1 +
√

5

2
= 1.618 . . .

which becomes exact when rounded to the nearest integer [29]. Since one needs approximately
�log i digits to encode an integer i, the code length of the kth word equals k logφ + O(1).
Adding up these contributions we find

lN = logφ

2
M2 + O(M). (13)

The number of words, M, in the LZ-parsing is related to the number of symbols of the string
by

N = FM+2 − 1. (14)

Therefore, the inverse relation is up to rounding errors:

M = 1/2 log 5 + log(N + 1)

logφ
− 2. (15)

Inserting the last expression into (13), the leading term of the estimate hN is

hN = (logN)2

2N logφ
+ O

(
logN

N

)
. (16)

4. Incremental parsing at the Feigenbaum point

Also of special interest is the border between periodicity and chaos, when the dynamics
of the logistic map becomes chaotic in the way of period doubling. Various properties
of the associated symbolic dynamics have been discussed in the context of block entropy
computations [9, 10, 29]. The recursive grammatical rule at the Feigenbaum point is [29]

a0 = 1

a1 = 10

ak+1 = akak−1ak−1

(17)

for k � 1. The first few ‘Feigenbaum words’ are

a0 = 1

a1 = 10

a2 = 1011

a3 = 10111010

a4 = 1.0.11.1010.10111011.
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The dots in a4 indicate the first words of the LZ incremental parsing scheme. In contrast
to the case of the Fibonacci words, here the dots seem to be positioned at the end of any
preceding ak . This comfortable situation is stated more precisely in:

Theorem 2 (parsing). Let S be the symbol sequence generated by the Feigenbaum words (17).
Then the words in the LZ incremental parsing are

w0 = 1

wk = a−
k−1 for k � 1.

(18)

Proof. By definition of LZ, for k = 0, we simply get w0 = 1. For the case k � 1 we state the
following:

Lemma 3. For any k � 1 it is

ak−1ak−1 = a−
k . (19)

Proof. The proof is given by induction. Start of induction, k = 1: it follows by definition that
a0a0 = 11 = 10− = a−

1 . Induction step from k to k + 1: by induction assumption we have
a−
k = ak−1ak−1. ‘Flipping’ the last bit in the equation it simply follows that ak = ak−1a

−
k−1.

Multiplying by ak from the left we get by definition (17), akak = akak−1a
−
k−1 = (ak+1)

− = a−
k+1.

By lemma 1, for k � 1, any Feigenbaum word, i.e. the first 2k bits of S can be expressed
as ak = ak−1a

−
k−1. Since the suffix a−

k−1 is identical to the prefix ak−1 except for the last symbol
and both are of equal length, it follows that wk = a−

k−1. Then, the preceding reference word
of any wk starts at the beginning of S and stops at the position of wk in S. �

Thus, for k � 1, the length ofwk is 2k−1, and the number of bits necessary for encodingwk

is k + O(1). Adding up these contributions we find the code length

lN = M2

2
+ O(M). (20)

The number of words, M, in the LZ-parsing are simply related to the number of symbols
of the string (up to rounding errors) by

M = 1 + logN. (21)

Finally, inserting the last expression into (19), we find

hN = (logN)2

2N
+ O

(
logN

N

)
. (22)

5. Conclusion

In the case of memoryless random sources the expected excess of hN over the entropy of the
source associated with the ZL-scheme is known to be of order ∝ 1/ logN [23], whereas for
the LZ-coding it is ∝ log logN/ logN . Therefore, in the case of Bernoulli sources, the ZL
algorithm—based on ‘shorter’ words in the parsing—converges faster. On the other hand, in
the case of the rabbit sequence or the logistic map at the Feigenbaum point, the convergence
of the LZ scheme is faster than for the memoryless case.

The author did not prove similar results for the ZL-parsing, but we conject the convergence
of leading order ∝ logN/

√
N for both dynamical systems, which is noticeably slower

compared to LZ. Thus, one would expect a faster convergence of the LZ-scheme for sequences
with long-range correlations, whereas it seems to be vice versa in the case of Markov- or
finite-state sources.
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